M. tuberculosis Sliding β-Clamp Does Not Interact Directly with the NAD+ -Dependent DNA Ligase
نویسندگان
چکیده
The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C222(1) with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent K(d) of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD(+)-dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria.
منابع مشابه
Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.
The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculo...
متن کاملEvaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics.
Mycobacteria contain genes for several DNA ligases, including ligA, which encodes a NAD(+)-dependent enzyme that has been postulated to be a target for novel antibacterial compounds. Using a homologous recombination system, direct evidence is presented that wild-type ligA cannot be deleted from the chromosome of Mycobacterium smegmatis. Deletions of native ligA in M. smegmatis could be obtained...
متن کاملBase-modified NAD and AMP derivatives and their activity against bacterial DNA ligases.
We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scien...
متن کاملDynamic assembly of Hda and the sliding clamp in the regulation of replication licensing
Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda-sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation o...
متن کاملNaphthalimides Selectively Inhibit the Activity of Bacterial, Replicative DNA Ligases and Display Bactericidal Effects against Tubercle Bacilli.
The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use β-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targ...
متن کامل